
RV’02 Preliminary Version

jContractor: Bytecode Instrumentation
Techniques for Implementing Design by

Contract in Java

Parker Abercrombie a,1 Murat Karaorman b,2

a College of Creative Studies
University of California

Santa Barbara, Ca 93106
b Texas Instruments, Inc.

315 Bollay Drive, Santa Barbara, Ca 93117

Abstract

Design by Contract is a software engineering practice that allows semantic informa-
tion to be added to a class or interface to precisely specify the conditions that are
required for its correct operation. The basic constructs of Design by Contract are
method preconditions and postconditions, and class invariants.

This paper presents a detailed design and implementation overview of jContrac-
tor, a freely available tool that allows programmers to write “contracts” as standard
Java methods following an intuitive naming convention. Preconditions, postcondi-
tions, and invariants can be associated with, or inherited by, any class or interface.
jContractor performs on-the-fly bytecode instrumentation to detect violation of the
contract specification during a program’s execution. jContractor’s bytecode engi-
neering technique allows it to specify and check contracts even when source code is
not available. jContractor is a pure Java library providing a rich set of syntactic
constructs for expressing contracts without extending the Java language or runtime
environment. These constructs include support for predicate logic expressions, and
referencing entry values of attributes and return values of methods. Fine grain con-
trol over the level of monitoring is possible at runtime. Since contract methods are
allowed to use unconstrained Java expressions, in addition to runtime verification
they can perform additional runtime monitoring, logging, and testing.

1 Email: parkera@cs.ucsb.edu
2 Email: muratk@ti.com

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:parkera@cs.ucsb.edu
mailto:muratk@ti.com

Abercrombie and Karaorman

1 Introduction

Design by Contract (DBC) is the software engineering practice of adding se-
mantic information to an application interface by specifying assertions about
the program’s runtime state. These assertions, collectively called a contract,
must hold true at well-specified check-points during the program’s execution.
A method precondition is the portion of the contract which specifies the state
that must be satisfied by the caller of the method. Invariants and method
postconditions provide the other half of the contract, specifying the relevant
state information that holds true upon completion of the method’s execution.

A contract specifies the conditions that govern the correct usage and im-
plementation of a module’s interface. It is natural to express the contract as
specification code that is a compiled along with the actual implementation
code. The contract code can be evaluated to ensure that the module is op-
erating according to specification, but correct execution of a program should
not rely on the presence or checking of contract code. It is still desirable to
automatically perform contract checking during a program’s execution.

The idea of associating boolean expressions (assertions) with code as a
means to argue the code’s correctness can be traced back to Hoare [4] and
others who worked in the field of program correctness. Meyer introduced
Design by Contract as a built-in feature of the Eiffel language [9], allowing
specification code to be associated with a class which can be compiled into
runtime checks.

In this paper we present a detailed design and implementation overview of
jContractor, distributed freely as a pure Java library which allows program-
mers to add contracts to Java programs as methods following an intuitive
naming convention. A contract consists of precondition, postcondition, and
invariant methods associated with any class or interface. Contract methods
can be included directly within the Java class or written as a separate con-
tract class. Contracts also work well with Java inheritance. Before loading
each class, jContractor detects the presence of contract code patterns in the
Java class bytecodes and performs on-the-fly bytecode instrumentation to en-
able checking of contracts during the program’s execution.

Evaluating contracts as a program executes has some performance penalty.
However, runtime contract checking is most useful during testing and debug-
ging, when runtime speed is usually not critical. Contract code can remain in
deployed bytecode, but contracts will only be evaluated when jContractor is
invoked. Leaving contracts in deployed code helps with troubleshooting, but
has no performance penalty when contracts are not checked.

The rest of the paper is organized as follows. In Section 2 we present
a brief overview of jContractor from the perspective of a programmer using
DBC in Java. In Section 3 we present details of jContractor’s design and
techniques for bytecode instrumentation to support runtime contract checking.
Finally, we give a brief overview of related work, and discuss alternative uses

57

Abercrombie and Karaorman

Table 1
Basic jContractor constructs

Construct jContractor Pattern and Description

Precondition protected boolean <methodname> Precondition (<arguments>)

Evaluated before a method is executed. Precondition failure
indicates a bug in the caller.

Postcondition protected boolean <methodname> Postcondition
(<arguments>, <return type> RESULT)

Evaluated before returning from a method. Postcondition fail-
ure indicates a bug in the callee. The RESULT argument holds
the method’s return value.

Invariant protected boolean Invariant ()

Evaluated at the beginning and end of every public method.
Invariant failure indicates a bug in the callee.

OLD private <classname> OLD;

return count == OLD.count + 1;

Allows postconditions to refer to the state of an object at
method entry.

of jContractor to perform other runtime monitoring.

2 jContractor overview

jContractor is available in Open Source form at http://jcontractor.sourceforge.net.
It is a pure Java application, and will run on all platforms that support Java.
In this section we provide an overview of how jContractor facilitates writing
contracts and enables contract checking at runtime.

2.1 Writing contracts with jContractor

Contracts in jContractor are written as methods that follow a naming con-
vention. The supported constructs and their patterns are described in Table
1. All contract methods return a boolean value, which is the result of the
contract evaluation. If a contract method returns false, an exception will be
thrown.

Preconditions

A precondition method takes the same arguments as the method it is
associated with and is checked immediately before the method is executed.

58

http://jcontractor.sourceforge.net

Abercrombie and Karaorman

It is the responsibility of the caller to ensure that the precondition check
succeeds.

Postconditions

A postcondition method takes the same arguments as the method it is as-
sociated with followed by an additional RESULT argument of the same type as
the method’s return type. For void methods, RESULT is declared to be of type
java.lang.Void. The postcondition associated with an instrumented method is
checked immediately before the method returns with the RESULT argument
holding the method’s return value. This allows postconditions to make asser-
tions about a method’s result. It is responsibility of the class implementing
the method to ensure that the postcondition holds.

Invariants

An invariant method is similar to a postcondition but does not take any
arguments and is implicitly associated with all public methods. It is evaluated
at the beginning and end of every public method. It is the responsibility of
the implementation class that the invariant checks succeed.

Our approach differs slightly from Eiffel’s invariant checking in that Eiffel
invariants are only checked for method calls that originate outside of the class,
as in foo.bar(). The invariant is not checked on the bar() method when it is
called from another method in the same class. This distinction frees an Eiffel
class from having to maintain the invariant during its internal operations.

OLD references

jContractor allows postconditions to refer to the state of an object at
method entry. To enable this feature, a class must declare an instance variable
named OLD of the same type as the class. Postconditions can then access
attributes or execute methods by referencing OLD. Bytecode instrumentation
routes all references to OLD to a clone of the object created at method entry.
The clone is created using the clone() method, so the class must implement
the java.lang.Cloneable interface and define this method.

Predicate Logic Quantifiers

jContractor also provides a support library for writing expressions using
predicate logic quantifiers and operators such as Forall, Exists, suchThat, and
implies. The supported quantifiers operate on instances of java.util.Collection,
and are outlined in Table 2. These quantifiers offer a high level of abstraction
and greatly improve readability when writing contract specifications.

59

Abercrombie and Karaorman

Table 2
jContractor’s logic constructs

Construct jContractor Pattern and Description

ForAll ForAll.in(collection).ensure(assertion)

Ensures that all elements of a collection meet an assertion.

Exists Exists.in(collection).suchThat(assertion)

Ensures that at least one element of a collection meets an as-
sertion.

Elements Elements.in(collection).suchThat(assertion)

Returns a java.util.Vector containing all the elements of a col-
lection that meet an assertion.

Implies Logical.implies(A, B)

Evaluates true if A and B are both true, or if A is false. The
logical equivalent of ∼ A ∨B.

2.2 Checking contracts with jContractor

Running a program with contract checks enabled is as easy as passing the class
name and command line arguments to the jContractor program. For exam-
ple, a program containing jContractor contracts can be run with no runtime
contract checking by

% java Foo arg1 arg2 arg3 ...

To run the same application with full contract checking one might enter

% java jContractor Foo arg1 arg2 arg3 ...

jContractor will replace the system class loader with a specialized class
loader that will instrument class bytecodes as they are loaded, and execute
the Foo program.

jContractor allows the user to specify the level of instrumentation (precon-
ditions only, preconditions and postconditions, or all contracts) for each class
in the system. To execute the Foo program checking only preconditions, but
preconditions and postconditions in the bar package, and all contracts in class
FooBar, one would enter

% java jContractor -pre * -post bar.* -all bar.FooBar Foo arg1

arg2 arg3 ...

jContractor supports wild cards similar to those used in Java import state-
ments, allowing the user to concisely specify the instrumentation level. The

60

Abercrombie and Karaorman

instrumentation levels may also be read from a file. The instrumentation lev-
els (pre, post, and all) are those suggested by Meyer in [10, p. 393] and [9, p.
133]. The rationale is that for a method’s postcondition to be satisfied, the
precondition must have been satisfied. The invariant can only be satisfied if
both preconditions and postconditions have been met. It is senseless to check
the postcondition without checking the precondition, or the invariant without
the precondition and the postcondition.

In some cases, it is not possible to replace the system class loader. For
example, the class loader used by a web browser to load Java applets is be-
yond the programmer’s control. In cases like these, jContractor can write
instrumented bytecodes to disk, creating a set of instrumented classes that
parallel the original uninstrumented classes. These instrumented classes can
be executed without a full jContractor distribution. To instrument the file
Foo.class one can execute jContractor’s sister program, jInstrument

% java jInstrument Foo.class

This command will overwrite Foo.class with the instrumented bytecode.

3 Design and implementation

jContractor’s basic operation involves discovering contracts associated with
each class or interface just before the class bytecodes are loaded, and perform-
ing code transformations to enable contract checks at runtime.

jContractor instruments classes at the bytecode level, but the discussion
in Sections 3.1 through 3.7 uses Java source code models to illustrate code
transformations. Bytecode implementation details are discussed in Section
3.8.

In Section 3.1 we will discuss simple instrumentation techniques. In sub-
sequent sections we will build upon the basic foundation to develop a robust
Design by Contract implementation.

3.1 Implementing simple contract checks

The basic instrumentation technique used by jContractor is to execute the
following steps on each class just before it is loaded. For each non-contract
method m with signature s in class C

• Search for a method named m Precondition with signature s in C or a sepa-
rate contract class, C CONTRACT, and prepend a call to m Precondition to
m.

• Search for a method named m Postcondition with signature s, with an ad-
ditional argument RESULT, in C or C CONTRACT, and append a call to
m Postcondition to m.

• If m is public, search C and C CONTRACT for a method named Invariant.

61

Abercrombie and Karaorman

j a v a . u t i l . Vecto r imp l ementa t i on ;
. . .
pub l i c void push (Object o) {

imp l ementa t i on . addElement (o) ;
}

Fig. 1. Listing of Stack.push(Object)

pub l i c void push (Object o) {
i f (! I n v a r i a n t ())

throw new I n v a r i a n t V i o l a t i o n E r r o r () ;
i f (! p u s h P r e c ond i t i o n (o))

throw new P r e c o n d i t i o nV i o l a t i o n E r r o r () ;

imp l ementa t i on . addElement (o) ;

i f (! p u s h Po s t c o nd i t i o n (o , nu l l))
throw new Po s t c o n d i t i o nV i o l a t i o n E r r o r () ;

i f (! I n v a r i a n t ())
throw new I n v a r i a n t V i o l a t i o n E r r o r () ;

}

Fig. 2. Simple instrumentation of Stack.push(Object)

Insert calls to the invariant method at the beginning and end of m.

Checking a contract at runtime involves calling the contract method and
throwing an exception if the result is false. At first glance, checking a contract
is quite straightforward. One need only add a call to the contract method at
the beginning or end of the method, and throw an exception if the contact
evaluates false. jContractor throws the following exceptions: PreconditionVi-
olationError, PostconditionViolationError, and InvariantViolationError. All three
extend java.lang.AssertionError.

To illustrate the instrumentation process, we use the push(Object) method
of a Stack class, shown in Figure 1. A naive code transformation may result
in the instrumented push(Object) method shown in Figure 2. This is almost
correct, but overlooks an important point, which will be discussed in the next
section.

3.2 The Assertion Evaluation Rule

Checking contracts at runtime usually helps find bugs and verify correctness.
However, care must be taken to prevent contract checking itself from intro-
ducing bugs. Consider what happens when the invariant is checked in this
simple example

62

Abercrombie and Karaorman

c l a s s Stack {
. . .
pub l i c i n t s i z e () { . . . }
protected boolean I n v a r i a n t () {

return s i z e () >= 0;
}

}

When the invariant is checked, the size() method is executed to ensure that
the size is non-negative. size() is a public method, so the sample invariant
should be checked at its entry point. But checking the invariant requires a
call to size(), which leads to an infinite recursion of contract checks. To avoid
situations like this, Design by Contract includes the Assertion Evaluation Rule
[10, p. 402], which states that only one contract may be checked at a time.
In the Stack example, the invariant will call size(). Since there is already a
contract check in progress, the invariant will not be checked on size().

Implementing the Assertion Evaluation Rule requires that jContractor
keeps track of when a contract check is in progress. This information is
associated with each active thread. jContractor implements the Assertion
Evaluation Rule by maintaining a shared hash table of threads that are ac-
tively checking contracts. Before a thread checks a contract, it queries the
table to see if it is already checking one. If not, the thread inserts itself into
the table, and proceeds with the contract check. When the check completes,
the thread removes itself from the table.

The jContractorRuntime class provides static methods to determine if a
thread is checking a contract, and to manage assertion checking locks on each
thread. A Java model of the instrumented push(Object) method is shown in
Figure 3.

It is necessary to wrap each contract check in a try-finally block so that
the lock is released even if an exception is thrown while checking the contract.
Usually, a contract violation terminates the program, in which case it doesn’t
matter if the lock is released or not. But the error could be caught and
handled. If so, contract checking would halt for the remainder of the run if
the lock were not released.

3.3 Predicate logic support

Contracts often involve constraints that are best expressed using predicate
logic quantifiers. For example, in a graph structure there might be an array of
nodes, each of which can have connections to other nodes. An implementation
using this structure might want to ensure that each node in the graph is
connected to at least one other. In mathematical notation, such a constraint
could be written as

∀n ∈ nodes | n.connections >= 1

63

Abercrombie and Karaorman

pub l i c void push (Object o) {
i f (jCon t r a c to rRun t ime . canCheckAs s e r t i on ()) {

t ry {
jCon t r a c to rRun t ime . l o c kA s s e r t i o nChe c k () ;
i f (! I n v a r i a n t ())

throw new I n v a r i a n t V i o l a t i o n E r r o r () ;
i f (! p u s h P r e c ond i t i o n (o))

throw new P r e c o n d i t i o nV i o l a t i o n E r r o r () ;
} f i n a l l y {

jCon t r a c to rRun t ime . r e l e a s eA s s e r t i o nCh e c k () ;
}

}

imp l ementa t i on . addElement (o) ;

i f (jCon t r a c to rRun t ime . canCheckAs s e r t i on ()) {
t ry {

jCon t r a c to rRun t ime . l o c kA s s e r t i o nChe c k () ;
i f (! I n v a r i a n t ())

throw new I n v a r i a n t V i o l a t i o n E r r o r () ;
i f (! p u s h Po s t c o nd i t i o n (o , nu l l))

throw new Po s t c o n d i t i o nV i o l a t i o n E r r o r () ;
} f i n a l l y {

jCon t r a c to rRun t ime . r e l e a s eA s s e r t i o nCh e c k () ;
}

}
}

Fig. 3. Final instrumented version of Stack.push(Object)

jContractor allows a contract to be any function that evaluates to a boolean,
so the graph constraint could be written using a loop, as shown below

j a v a . u t i l . C o l l e c t i o n nodes ;
. . .
j a v a . u t i l . I t e r a t o r i = nodes . i t e r a t o r () ;
whi le (i . hasNext ()) {

i f (((Node) i . nex t ()) . c onn e c t i o n s < 1)
return f a l s e ;

}
return true ;

Using a loop works, but it requires the programmer to rewrite the quanti-
fier’s logic for each use. jContractor offers high level programming abstractions
for common predicate logic expressions using a simple Java library. jContrac-
tor’s quantifiers are summarized in Table 2, and can be applied to any instance
of java.util.Collection, which includes all standard Java data structures. This

64

Abercrombie and Karaorman

Table 3
Assertions provided with jContractor

Assertion Description

InstanceOf Asserts that objects are of a certain runtime type.

Equal Asserts that objects are equal. The programmer specifies if the
comparison should be by reference or by value.

InRange Asserts that a number fall between minimum and maximum
bounds.

Not Used to negate another assertion, as in new Not(new
Equal(Foo)).

library is completely isolated from the main jContractor code, and can be used
independently.

The graph invariant can be expressed using jContractor’s syntax as follows

j a v a . u t i l . C o l l e c t i o n nodes ;
. . .
A s s e r t i o n connected = new As s e r t i o n () {

pub l i c boolean e v a l (Object o) {
return ((Node) o) . c onn e c t i o n s >= 1;

}
} ;
return Fo rA l l . i n (nodes) . en su r e (connected) ;

This version is the same length as the version using a loop, but it makes
the contract more explicit. Some commonly used assertions are provided in
the package, and are summarized in Table 3. For example, it is very simple
to ensure that every element of a collection conforms to certain runtime type,
as shown in the code snippet below

Fo rA l l . i n (e l ement s) . en su r e (new I n s t an c eO f (I n t e g e r . c l a s s)) ;

This type of assertion is useful for controlling the type of objects that can
be stored in a data structure.

Implementing the logic for a quantifier in Java is quite easy since all com-
mon data structures implement the java.util.Collection interface, and provide
iterators. The biggest obstacle is finding a clean way of passing code into the
iterator object. jContractor solves this problem by introducing an Assertion
interface, which declares the standard interface method, eval(Object), to test
the assertion. The implementation of the ForAll quantifier is shown in Figure
4. The Exists and Elements quantifiers are implemented in a similar way.

Finally, the static implies method of the Logical class allows programmers to
write expressions of the form A implies B, where A and B are of type boolean.

65

Abercrombie and Karaorman

pub l i c i n t e r f a ce As s e r t i o n {
pub l i c boolean e v a l (Object o) ;

}

pub l i c c l a s s Fo rA l l {
protected j a v a . u t i l . C o l l e c t i o n t h e C o l l e c t i o n ;
pub l i c Fo rA l l (C o l l e c t i o n c) {

t h e C o l l e c t i o n = c ;
}
pub l i c s t a t i c Fo rA l l i n (j a v a . u t i l . C o l l e c t i o n c) {

return new Fo rA l l (c) ;
}
pub l i c boolean en su r e (A s s e r t i o n a) {

j a v a . u t i l . I t e r a t o r i = t h e C o l l e c t i o n . i t e r a t o r () ;
whi le (i . hasNext ()) {

i f (! a . e v a l (i . nex t ())) {
return f a l s e ;

}
}
return true ;

}
}

Fig. 4. jContractor’s implementation of the ForAll quantifier

Such an expression is the logical equivalent of ∼ A ∨ B. Using jContractor
syntax, the expression would be written Logical.implies(A, B).

3.4 Implementing RESULT

Postconditions often make assertions about the function’s result, which means
that the postcondition method must have a way of referring to the func-
tion’s return value. Implementing this feature in jContractor requires that
the result be captured and passed as an extra argument to the postcondition
method. If the method’s return type is void, RESULT is declared to be of type
java.lang.Void. The runtime value of a Void RESULT will always be null.

The mechanics of supporting RESULT are simple. jContractor adds a new
local variable to each method with a postcondition for storing the result. Byte-
code instrumentation replaces the return instructions with instructions to save
the return value to the result variable. Finally, the instrumentation ensures
that the computed result is passed to the postcondition during contract check-
ing. For void methods, there is no result to save, so a null value is passed to
the postcondition. A Java model of the instrumented size() method is shown
in Figure 5 to illustrate this transformation.

66

Abercrombie and Karaorman

pub l i c i n t s i z e () {
i n t $ r e s u l t = imp l ementa t i on . s i z e () ;
i f (jCon t r a c to rRun t ime . canCheckAs s e r t i on ()) {

t ry {
jCon t r a c to rRun t ime . l o c kA s s e r t i o nChe c k () ;
i f (! s i z e P o s t c o n d i t i o n ($ r e s u l t))

throw new Po s t c o n d i t i o nV i o l a t i o n E r r o r () ;
} f i n a l l y {

r e l e a s eA s s e r t i o nCh e c k () ;
}

}
return $ r e s u l t ;

}

Fig. 5. Instrumentation example to support RESULT

3.5 Implementing OLD

Postconditions often express how an object’s state was changed by the method’s
execution. Therefore, the postcondition must be able to refer to the state of
the object just before executing the method. Eiffel provides the old keyword
for this purpose. jContractor mimics Eiffel’s old syntax by introducing the
OLD instance variable. The syntax for both implementations is shown in
Figure 6.

In order to access old values in jContractor, the class must explicitly declare
a private instance variable called OLD, of the same type as the class. The
variable is private because it has meaning only in the class in which it is
declared. Subclasses will declare their own OLD variables.

There are two alternative approaches to supporting old references. The
first technique is to simply move the code from the old reference to the top
of the method and save the result. An example of this approach is shown
in Figure 7. This technique is used successfully in some other Java DBC
tools that rely on the presence of source code [2,6,8,11]. However, it is not
feasible when instrumenting bytecode. jContractor works with any valid Java
bytecode, even those that have run the gauntlet of obfuscators and optimizers.
The possibility of heavily obfuscated or optimized code makes it extremely
difficult, if not impossible, to extract the code that made up the OLD reference.

The second approach, used by jContractor, is to create a clone of the
object before executing the method body. When jContractor instruments a
postcondition method, it redirects references to OLD to the cloned copy that
holds the object’s state at method entry. jContractor uses the clone() method
to create the copy, so all classes that contain OLD references must implement
the java.lang.Cloneable interface. Figure 8 illustrates this approach.

Unfortunately, simply storing the cloned state in the OLD instance variable
is not sufficient, because the value needs to be saved at the entry point of every

67

Abercrombie and Karaorman

Eiffel

c l a s s STACK[G]
f e a t u r e

push (new ob j e c t : G) i s
d e f e r r e d
en su r e

s i z e i n c r e a s e d : s i z e = o ld s i z e + 1
end

end −− c l a s s STACK

jContractor

pub l i c abstract c l a s s Stack {
pr i va te Stack OLD;
pub l i c abst ract void push (Object o) ;
protected boolean pu s h Po s t c ond i t i o n () {

return s i z e () == OLD. s i z e () + 1 ;
}

}

Fig. 6. Comparison of Eiffel and jContractor syntax for old

pub l i c void push (Object o) {
i n t $ o l d s i z e = s i z e () ;
// Check p r e c o n d i t i o n and en t r y i n v a r i a n t
// Method body
// Check p o s t c o n d i t i o n u s i n g $ o l d s i z e
// i n p l a c e o f OLD. s i z e ()
// Check e x i t i n v a r i a n t

}

Fig. 7. Implementing OLD by selectively saving data

method that uses OLD in its postcondition. In the worst case scenario, OLD
needs to be saved for every method call. This leads jContractor to adopt a
stack based variant of the solution. When execution enters a method that
needs to save OLD, jContractor creates a clone of the object, and pushes it
onto a stack. When the method exits, the object is popped from the stack,
and used to check the postcondition. jContractor’s version of push(Object)
using this implementation is shown in Figure 9.

68

Abercrombie and Karaorman

pub l i c void push (Object o) {
OLD = (Stack) c l o n e () ;
// Check p r e c o n d i t i o n and en t r y i n v a r i a n t
// Method body
// Check p o s t c o n d i t i o n . OLD ho l d s s t a t e at e n t r y .
// Check e x i t i n v a r i a n t

}

Fig. 8. Implementing OLD with a clone

pub l i c void push (Object o) {
jCon t r a c to rRun t ime . pushSta te (c l o n e ()) ;
// P r e c o nd i t i o n and en t r y i n v a r i a n t check
// Method body
// Po s t c o nd i t i o n and e x i t i n v a r i a n t check

}
protected boolean pu s h Po s t c ond i t i o n (Object o ,

Void RESULT) {
Stack $o ld = (Stack) jCon t r a c to rRun t ime . popState () ;
return count () == $o ld . s i z e () + 1 ;

}

Fig. 9. Implementing OLD with a stack

3.6 Separate contract classes

jContractor allows contracts to be written in separate contract classes. Con-
tract classes follow the naming convention classname CONTRACT. When in-
strumenting a class, jContractor will find its contract class and copy all the
contract code into the non-contract class. If the same contract is defined in
both classes (both classes define a precondition for a method, for example),
the two are logical and-ed together. Defining a contract in a separate class
allows jContractor to add contracts to classes for which source code is not
available.

3.7 Inheritance and contracts

jContractor’s implementation of Design by Contract works well with both
class and interface inheritance. A class inherits contracts from its superclass
and implemented interfaces. A method’s contract is made up of four parts,
described in Table 4. Figure 10 shows how all the pieces are combined to form
the complete contract. Any instrumented method must

• Accept all input and precondition states valid to the superclass method

• Meet all postcondition guarantees of the superclass method

69

Abercrombie and Karaorman

}

}

}

}

 }

Check invariant

Check precondition

Original method body

Check postcondition

Check invariant

 (External precondition

 && Original precondition);

 && super.m_Postcondition(RESULT)

 }
 && Original postcondition ;

 }
}

 && Original invariant ;

// Instrumented version

class FooInterface_CONTRACT {

class Foo_CONTRACT {

class SuperFoo {

void m () { ... }

boolean m_Precondition () { ... }

boolean

boolean _Invariant () { ... }

boolean m_Precondition () { ... }

boolean m_Postcondition () { ... }

boolean _Invariant () { ... }

boolean

boolean m_Postcondition () { ... }
boolean m_Precondition () { ... }

boolean _Invariant () { ... }

boolean m_Postcondition () { ... }

boolean m_Precondition () { ... }

 _Invariant () {boolean

boolean m_Postcondition (Void RESULT) {

boolean m_Precondition () {

void m () {

void m () { ... }

implements

return Interface preconditons

 && Interface postconditions

 && Interface invariants

||

return

return External Invariant

 External postcondition

&& super ._Invariant()

class Foo extends SuperFoo

class Foo extends SuperFoo

implements

super .m_Precondition()

m_Postcondition () { ... }

 _Invariant () { ... }

 }

 }

 FooInterface {

 FooInterface {

Fig. 10. How contracts are combined. Solid lines show where bytecode is copied,
dotted lines show where method calls are inserted.

Put another way, the subclass method can only “weaken the precondition”
and “strengthen the postcondition.” This means that the precondition for the

Table 4
The four parts of a method’s contract

Internal contract Defined in the same class as the method.

External contract Defined in a separate contract class.

Superclass contract Inherited from the superclass.

Interface contracts Inherited from interfaces.

70

Abercrombie and Karaorman

c l a s s A {
pub l i c i n t f oo () { . . . }
protected boolean f o o Po s t c o n d i t i o n (i n t RESULT) { . . . }

}
c l a s s B extends A {

pub l i c i n t f oo () { . . . } // Ov e r r i d e s A . foo ()
protected boolean f o o Po s t c o n d i t i o n (i n t RESULT) {

return super . f o o Po s t c o n d i t i o n (RESULT) && (RESULT > 0) ;
}

}

Fig. 11. An example of postcondition inheritance

subclass method is logical or-ed with the super class precondition, and the
postcondition is logical and-ed. This requires that the subclass accept all
input valid to the superclass method, and may accept more that is invalid
to the superclass. However, it must abide by the guarantees made by its
parent, though it may strengthen those guarantees. Like postconditions, class
invariants are logical and-ed. jContractor implements contract inheritance by
instrumenting each contract method to call the superclass contract method.
Figure 11 shows an example of this instrumentation.

Another approach to implementing contract inheritance is to copy the con-
tract method from the superclass into the subclass. However, we feel that this
approach is not as clean as calling the superclass method. More importantly,
problems arise when contracts refer to private members in the superclass.
Copying the contract code into the subclass would cause an illegal access er-
ror. Calling the superclass contract evaluates the contract in the context of
the superclass, and handles private members correctly.

However, the technique described above does not work for interfaces, which
cannot include contract code. Interface contracts must be written in separate
contract classes, which jContractor will find and merge into the implementing
class.

Inherited contracts guarantee that when a method is called on an object,
the contracts will be met, regardless of the runtime type of the object. How-
ever, this guarantee is only meaningful for methods that behave polymorphi-
cally. Private methods, constructors, and static methods do not behave this
way, so contract inheritance does not make sense for these methods. jCon-
tractor recognizes this, and only enforces inherited contracts for non-private,
non-static, non-constructor methods.

3.8 Implementation of bytecode instrumentation

Our discussion of contract checking so far has illustrated code transforma-
tions using Java source code models. The actual instrumentation, however, is
done using Java class bytecodes, and matches the logic of source code trans-

71

Abercrombie and Karaorman

formation. jContractor uses the Byte Code Engineering Library (BCEL) [1]
to instrument classes at the bytecode level, without requiring source code or
additional compilation. Figure 12 shows the source code for pop() and its post-
condition, and Figure 13 shows the disassembled bytecode for these methods
(see [7] for an explaination of the instruction set). Instrumented versions of
these methods are given in Figures 14 and 15. For brevity, this method has not
been instrumented to check an invariant, and does not have a precondition.
The patterns for checking preconditions and invariants are very similar.

Since a Java method can contain any number of return statements, jCon-
tractor replaces all return instructions with a jump to the end of the method,
where code is inserted to check the postcondition and exit invariants.

jContractor uses the clone() method to allow postconditions to refer to the
entry values of members. However, this creates a dependency between post-
conditions and clone(). Attempting to save an object’s state while evaluating
a postcondition called from clone() or from a method called by clone() would
cause an infinite recursion. Since the clone() method is required to check
contracts, contracts cannot be checked while executing clone() itself.

Statements 13–26 in Figure 14 make up the original pop() method. Note
that the return instruction has been replaced with a jump to the end of the
method. (This jump could be eliminated, but jContractor does not perform
such optimization.) Statement 29 saves the result to the local variable $result,
which jContractor adds to the method. Statements 30 and 33 check to see if
the postcondition should be checked. If so, the the postcondition is checked
by statements 39–44. Statements 47–59 are executed when the postcondition
fails, and 60–64 are executed when the postcondition passes.

At this point, all of the major issues involved in runtime contract checking
have been discussed. The ultimate goal (adding contract checking code to a
class) is acomplished by way of small and largely independent subgoals (for
example, adding code to check a precondition or handling old references).
jContractor takes an assembly line approach to bytecode instrumentation.
Each idependent operation is coded as a separate class, extending an abstract
Transformation class. Then the class file to be instrumented is processed by
each Transformation object, and at the end of the sequence it emerges fully
instrumented. Figure 16 shows the sequence of transformations applied by
jContractor.

This architecture is simple, but effective. Most of the transformations are
completely independent. A few, however, need to save data for subsequent
transformations. A shared hash table is created, into which a transformation
can put data to be read later by another transformation. This solution is
satisfactory for jContractor, but offers much opportunity for improvement.
A generally useful framework would provide a more controlled mechanism to
allow transformations to exchange data.

72

Abercrombie and Karaorman

pub l i c Object pop () {
return imp l ementa t i on . remove (s i z e () − 1) ;

}
protected boolean pop Po s t c ond i t i o n (Object RESULT) {

return (RESULT != nu l l) && (s i z e () == OLD. s i z e () − 1) ;
}

Fig. 12. Listing of Stack.pop() and postcondition

public Object pop()
0: aload 0
1: getfield Stack.implementation Ljava/util/Vector; (4)
4: aload 0
5: invokevirtual Stack.size ()I
8: iconst 1
9: isub
10: invokevirtual java.util.Vector.remove (I)Ljava/lang/Object;
13: areturn

Local variables:
index = 0 : Stack this

protected boolean pop Postcondition(Object RESULT)
0: aload 1
1: ifnull #24
4: aload 0
5: invokevirtual Stack.size ()I
8: aload 0
9: getfield Stack.OLD LStack;
12: invokevirtual Stack.size ()I
15: iconst 1
16: isub
17: if icmpne #24
20: iconst 1
21: goto #25
24: iconst 0
25: ireturn

Local variables:
index = 0 : Stack this
index = 1 : Object RESULT

Fig. 13. Bytecode listing of uninstrumented Stack.pop() and
Stack.pop Postcondition

73

Abercrombie and Karaorman

Check the postcondition if the
thread is not already checking
a contract.

public Object pop()

50: dup

59: athrow

39: aload_0

40: aload_1

Original method body.

Save the result to $result.

9: aload_0

22: isub

13: aload_0

17: aload_0

21: iconst_1

29: astore_1

64: areturn

63: aload_1

0: invokestatic jContractorRuntime.canCheckAssertion ()Z

6: invokestatic jContractorRuntime.lockAssertionCheck ()V

10: invokevirtual Stack.$saveState ()V

14: getfield Stack.implementation Ljava/util/Vector;

23: invokevirtual java.util.Vector.remove (I)Ljava/lang/Object;

30: invokestatic jContractorRuntime.canCheckAssertion ()Z

53: invokespecial PostconditionViolationError.<init> (Ljava/lang/String;)V

47: new <PostconditionViolationError>

44: ifne #60

41: invokevirtual Stack.pop_Postcondition (Ljava/lang/Object;)Z

36: invokestatic jContractorRuntime.lockAssertionCheck ()V

33: ifeq #63

56: invokestatic jContractorRuntime.releaseAssertionCheck ()V

60: invokestatic jContractorRuntime.releaseAssertionCheck ()V

18: invokevirtual Stack.size ()I

If the current thread is not

checking a contract, call

$saveState() to create and

save a clone of the object.

Local variables:

index = 0 : Stack this

index = 1 : Object $result

Recall the result,

and return from the method

26: goto #29

3: ifeq #13

51: ldc "jContractor Exception: Postcondition Violated"

Fig. 14. Bytecode listing of instrumented Stack.pop()

4 Future and related work

4.1 Factory style instantiation

The implementation described in this paper allows the user to control instru-
mentation down to the class level. However, it is possible to control instrumen-
tation on an instance-by-instance basis, using a factory model to instrument
classes. Instead of creating an object with the new keyword, the client could
invoke the jContractor.create(String, Class[], Object[]) method, which will in-
stantiate and return an instrumented instance of the class.

Factory style instantiation can be implemented with slight modification to
jContractor’s current bytecode transformations. First, jContractor will create
a new class that is a subclass of the base class. Then a method will be added to
the subclass for each non-private method of the superclass with an associated
contract. The bodies of these methods will simply wrap contract checking

74

Abercrombie and Karaorman

protected boolean pop Postcondition(Object RESULT)
0: invokestatic jContractorRuntime.popState ()Ljava/lang/Object;
3: checkcast <Stack>
6: astore 2
7: aload 1
8: ifnull #28
11: aload 0
12: invokevirtual Stack.size ()I
15: aload 2
16: invokevirtual Stack.size ()I
19: iconst 1
20: isub
21: if icmpne #28
24: iconst 1
25: goto #29
28: iconst 0
29: goto #32
32: ifeq #39
35: iconst 1
36: goto #40
39: iconst 0
40: goto #43
43: ifeq #50
46: iconst 1
47: goto #51
50: iconst 0
51: ireturn

Local variables:
index = 0 : Stack this
index = 1 : Object RESULT
index = 2 : Stack $old

Fig. 15. Bytecode listing of instrumented Stack.pop Postcondition

code around a call to the superclass method. Finally, jContractor creates an
instance of the instrumented class using the Java reflection API, and returns
the object to the client. Thanks to polymorphism, the client can treat the
instrumented object just as if it were the real thing, and all contracts will be
checked. Figure 17 gives an example of this process.

This approach suffers from a few limitations. Private methods cannot be
instrumented, because they are not visible in the subclass. Final classes can
not be instrumented, because they cannot be subclassed. Also contracts from
a separate contract class could refer to private members that are inaccessi-
ble to the subclass. These difficulties aside, a factory approach also requires

75

Abercrombie and Karaorman

Push a clone of the object onto
the saved instances stack at the
beginning of each method which has
a postcondition that refers to OLD.

SaveOldStateTransformation.class

Modify each invariant method to
include a call to the superclass
invariant, and to incorporate the
externally defined contract and
contracts from interfaces.

InvariantMethodTransformation.class

Instrument postcondition methods to pop
the saved state from the saved instances
stack, and insert it where ever OLD is used.

ReplaceOldReferencesTransformation.class

Modify each method on which the
invariant should be checked to
include a call to the invariant
method.

InvariantCheckTransformation.class

Suppress contract checking in
the clone() method. This
method is used to check OLD
references.

LockCloneTransformation.class

Modify each postcondition method to
include a call to the super class
postcondition, and to incorporate
the externally defined contract and
contracts from interfaces.

PostconditionMethodTransformation.class

Instrumented
Bytecode

Bytecode

Modify each precondition method to
include a call to the super class
precondition, and to incorporate the
externally defined contract and
contracts from interfaces.

PreconditionMethodTransformation.class

Modify each method on which a
postcondition should be checked to
include a call to the postcondition
method.

PostconditionCheckTransformation.class

ReplaceReturnInstructionsTransformation.class
Replace all return instructions with a jump to
end of the method, so that the exit condition
may be checked.

Modify each method on which a
precondition should be checked to
include a call to the precondition method.

PreconditionCheckTransformation.class

MarkInstrumentedTransformation.class
Add a constant to the class that tells
jContractor that the class has been
instrumented. This prevents the class
from being instrumented twice.

Fig. 16. Byte code transformation

the programmer to explicitly control instrumentation. However, the value of
being able to create instrumented instances using a factory outweighs these
drawbacks. Factory instantiation would give the programmer complete control
over instrumentation, and could be useful for permanently enabling contracts
in an isolated part of the code, or for programmatically controlling contract
checks.

76

Abercrombie and Karaorman

Bytecodes

"Foo"

"Foo"

 // Check precondition and entry invariant.

 // Check postcondition and exit invariant.

 }

 // Check contract and invariants from interfaces and

 // Foo_CONTRACT.

 }

}

 ...

 ...
 Foo f = jContractor.new("Foo", null, null);

 }

}

Instrumentor
jContractor

}

Foo_INSTRUMENTED

public class

public

public

public

public

protected

public T m () { ... }

super

jContractor.create
void f () {

Bar {

class Foo_INSTRUMENTED extends Foo {
 T m () {

 .m();

protected boolean

return super .m_Precondition();

class Foo {

boolean

 m_Precondition () {

m_Precondition () { ... }

Fig. 17. Factory instrumentation and instantiation

4.2 Exception handling

The original jContractor proposal [5] outlined a mechanism to express con-
tracts to handle method exceptions. However, the jContractor implementation
does not yet support this feature.

A method’s postcondition describes the contractual obligations of the method
when it terminates successfully. When a method terminates abnormally due
to some exception, it is not required to ensure that the postcondition holds.
It is desirable, however, for the method to specify what conditions must still
hold true in these situations, and to get a chance to restore the state to reflect
this.

jContractor allows exception handlers to be associated with each method.
An exception handler method’s name is obtained by appending the suffix
OnException to the method’s name. The exception handler method takes a
single argument, of an exception type. The body of the method can include
arbitrary Java statements and refer to the object’s internal state using the
same scope and access rules as the original method. When an exception is
thrown in the original method, the exception handler will execute and attempt
to correct the error or re-throw the exception.

4.3 Related work

Design by Contract originated in the Eiffel language, and has been imple-
mented in many others. There are several tools available that support DBC
for Java. However, most require source code availability, or use a special lan-
guage to write contracts. jContractor allows programmers to write contracts

77

Abercrombie and Karaorman

in pure Java, and can instrument classes even when the source code is not
available.

Duncan and Hölzle describe Handshake [3], a dynamically linked library
that intercepts JVM file accesses, and instruments classes on the fly. Hand-
shake does not require source code for the classes that it instruments; the pro-
grammer specifies contracts in a separate file, using a Java-like syntax. This
approach allows Handshake to add contracts to final classes, to interfaces, and
to system classes. jContractor is unable to instrument system classes, due to
restrictions in the system class loader.

Kramer’s iContract [6] is a source code preprocessor that allows program-
mers to embed contracts in comments using the @pre, @post, and @invariant
tags. This approach tightly couples specification and documentation, and al-
lows contracts to be easily extracted by JavaDoc-style tools. iContract also
supports the Forall and Exists quantifiers. iContract offers a clean and con-
vienient syntax, but requires source code availability.

Jass [2] is another tool that supports Design by Contract using a source
code preprocessor. In adition to preconditions, postconditions, and invariants,
Jass supports loop variants and invariants, predicate logic quantifiers, and
Eiffel-style “rescue-retry” exception handling. Jass provides a more robust
mechanism to control how a class is used in an inheritance heirarchy than
most other Design by Contract implementations, and a mechanism to specify
the instance variables that a method is a allowed to change. Jass also supports
“trace assertions,” which express constraints on the order in which events
occur.

JMSAssert [8], from Man Made Systems, also allows contracts to be em-
bedded in comments. However, rather than acting as a preprocessor that out-
puts instrumented Java code, JMSAssert compiles embedded contracts into
JMScript, a Java based scripting language. The contracts are checked using
a DLL that extends the JVM. This approach leaves the orignal source code
and bytecode unmodified. However, using a dynamically linked library cre-
ates a dependence on the operating system, and JMSAssert is currently only
available for Microsoft Windows.

Finally, the Parasoft Corporation produces JContract [11], and a comple-
mentary unit testing and static analysis tool called JTest. Like iContract and
Jass, JContract contracts are specified in comments. JContract includes the
ForAll and Exists quantifiers. In addition to the standard DBC constructs,
JContract allows the programmer to express contracts that control how a
method is used in a multithreaded application, and provides a logging mech-
anism.

5 Conclusion

In this paper we describe the design and implementation of a pure Java li-
brary, jContractor, which requires no special tools such as modified compilers,

78

Abercrombie and Karaorman

modified JVMs, or pre-processors to support Design by Contract. jContrac-
tor allows programmers to express contracts using pure Java in the form of
precondition, postcondition, and invariant methods. Contract methods can
be added to any Java class or interface or provided in a separately compiled
contract class. jContractor introduces a novel bytecode engineering technique
which allows it to check contracts even when the source code is not available.

Since contract methods are allowed to use unconstrained Java expressions,
in addition to runtime contract checking they can perform additional runtime
monitoring, verification, logging, and testing. For example, the code snippet
below shows how jContractor could be used as a logging tool. jContractor
also allows this code to be easily enabled and disabled by turning contract
checking on and off. However, jContractor was designed to implement Design
by Contract, and some of its features (support for inheritance, for example)
may not be appropriate in other domains.

protected boolean pu s h P r e c ond i t i o n (Object o) {
System . out . p r i n t l n (”Push ing ” + o + ” . . . ”) ;
return true ;

}

jContractor provides a rich set of syntactic constructs useful for expressing
powerful contract specifications without extending the Java language or run-
time environment. These include support for predicate logic expressions, the
ability to refer to the state of the object at method entry (old), and the ability
to refer to the computed result value for postcondition evaluation. A major
advantage of jContractor’s pure library based approach is that programmers
are free to use their standard development tools and environments, and can
also further extend jContractor’s capabilities.

Allowing fine grain control over the level of monitoring at runtime adds
great flexibility to the software development, testing and deployment cycles.
Leaving the contract code within deployed class bytecodes results in no ex-
tra runtime performance penalties, but can assist greatly in field tests and
troubleshooting.

jContractor has been released under the Apache Open Source License, and
is available for download from http://jcontractor.sourceforge.net.

References

[1] Dahm, M., Byte Code Engineering with the BCEL API, Technical Report B-
17-98, Institut für Informatik, Freie Universität Berlin (1998).

[2] Detlef Bartetzko, M. M., Clemens Fischer and H. Wehrheim, Jass - java with
assertions, , 55 (2001).

[3] Duncan, A. and U. Hölzle, Adding Contracts to Java with Handshake, Technical
Report TRCS98-32, Department of Computer Science, University of California,

79

http://jcontractor.sourceforge.net

Abercrombie and Karaorman

Santa Barbara (1998).

[4] Hoare, C., An Axiomatic Basis for Computer Programming, Communitications
of the ACM 12 (1969).

[5] Karaorman, M., U. Hölzle and J. Bruno, jContractor: A Reflective Java Library
to Support Design By Contract, in: Proceedings of Meta-Level Architectures and
Reflection, 2nd International Conference, Reflection ’99. Saint-Malo, France.
Lecture Notes in Computer Science #1616, Springer Verlag, 1999, pp. 175–196.

[6] Kramer, R., iContract - The Java Design by Contract Tool, in: J. G.
Madhu Singh, Bertrand Meyer and R. Mitchell, editors, Proceedings of TOOLS
USA ’98, Santa Barbara, California, August 3-7, 1998, 1998.

[7] Lindholm, T. and F. Yellin, “The Java Virtual Machine Specification,” Addison-
Wesley, Reading, 1999.

[8] Design by Contract for Java Using JMSAssert, Technical report, Man Machine
Systems.
URL http://www.mmsindia.com/DBCForJava.html

[9] Meyer, B., “Eiffel: The Language,” Prentice Hall, New York, 1992.

[10] Meyer, B., “Object Oriented Software Construction, 2nd ed.” Prentice Hall,
Upper Saddle River, 1997.

[11] Using Design by Contract to Automate Java Software and Component Testing,
Technical report, Parasoft Corporation.
URL http://www.parasoft.com/jsp/products/article.jsp?articleId=
579&product=Jcontract

80

http://www.mmsindia.com/DBCForJava.html
http://www.parasoft.com/jsp/products/article.jsp?articleId=579&product=Jcontract
http://www.parasoft.com/jsp/products/article.jsp?articleId=579&product=Jcontract

	Introduction
	jContractor overview
	Writing contracts with jContractor
	Checking contracts with jContractor

	Design and implementation
	Implementing simple contract checks
	The Assertion Evaluation Rule
	Predicate logic support
	Implementing RESULT
	Implementing OLD
	Separate contract classes
	Inheritance and contracts
	Implementation of bytecode instrumentation

	Future and related work
	Factory style instantiation
	Exception handling
	Related work

	Conclusion
	References

